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Abstract—Low-light face detection is challenging but critical for real-world applications, such as nighttime autonomous driving and city

surveillance. Current face detection models rely on extensive annotations and lack generality and flexibility. In this paper, we explore

how to learn face detectors without low-light annotations. Fully exploiting existing normal light data, we propose adapting face detectors

from normal light to low light. This task is difficult because the gap between brightness and darkness is too large and complicated at the

object level and pixel level. Accordingly, the performance of current low-light enhancement or adaptation methods is unsatisfactory. To

solve this problem, we propose a joint High-Low Adaptation (HLA) framework. We design bidirectional low-level adaptation and

multitask high-level adaptation. For low-level, we enhance the dark images and degrade the normal-light images, making both domains

move toward each other. For high-level, we combine context-based and contrastive learning to comprehensively close the features on

different domains. Experiments show that our HLA-Face v2 model obtains superior low-light face detection performance even without

the use of low-light annotations. Moreover, our adaptation scheme can be extended to a wide range of applications, such as improving

supervised learning and generic object detection. Project publicly available at: https://daooshee.github.io/HLA-Face-v2-Website/.

Index Terms—Low-light, domain adaptation, illumination enhancement, high-level, low-level, face detection
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1 INTRODUCTION

FACE detection is one of the fundamental computer vision
areas. It can facilitate various real-world applications,

including but not limited to identity authentication, portrait
beautification, and security monitoring. In recent decades,
face detection technology [1], [2], [3], [4] has experienced
rapid development and achieved remarkable results. How-
ever, finding and localizing faces under adverse illumina-
tion scenarios remains challenging. Underexposure leads to
a series of visual degradations, including but not limited to
unclear details, information loss, and color casting. These
degradations not only degrade subjective visual quality but
also deteriorate machine vision usability and robustness,
posing potential risks to surveillance video analytics and
auxiliary driving at night. For example, although dual shot
face detector (DSFD) [4] achieves over 90% face detection
precision on WIDER FACE [5], it can hardly detect faces
covered in darkness, as shown in Fig. 1a.

Recent works have paid attention to the construction of
face detection benchmarks under degraded conditions, e.g.,
DARK FACE [6] and the unconstrained face detection data-
set (UFDD) [7]. DARK FACE is a pioneering large-scale

low-light face detection dataset with both training/valida-
tion/testing sets, which provided rich resources for many
low-light face detection studies [8] in recent years. The
UFDD collects a new testing set of face images, including
weather-based degradations, motion blur, focus blur and
several others. Although these works fill in the blank in
some sense, they still neglect some issues. First, existing
datasets rely on extensive manual annotations. However,
data collection and annotation can be difficult under
extreme conditions, such as low light. Second, for real appli-
cations, there are still inevitable domain gaps due to differ-
ent data collection environments and devices. Therefore,
these datasets and methods can only support a limited
scope of applications.

Different from existing research, in this paper, we
explore how to adapt face detectors from normal light to
low light without the help of low-light annotations. Since
only low-light images in the given conditions need to be
collected, compared with existing works [4], [9], our
method can support more application scenarios. Our task
is nontrivial. The challenges lie in the gaps at low and high
levels, namely, pixel and feature levels. At the low level,
the two domains have different pixel appearances in terms
of illumination, color, and noise intensity, while at the
high level, the two domains have different object semantics
due to the difference between daytime and nighttime sce-
narios. Typical low-light enhancement methods [9], [10]
aim at improving human visual quality and thus might fail
to close the semantic gap, as shown in Fig. 1b. In contrast,
traditional adaptation methods are mainly designed for
tasks in which the scenes of source and target domains are
similar, such as adapting from Cityscapes [11] to Foggy
Cityscapes [12]. However, in our task, the domain gap is
much more complex. Experimental results show that tradi-
tional adaptation methods are not effective enough for our
task.
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To comprehensively narrow high-level and low-level
gaps, we propose joint High-Low Adaptation (HLA). For
low-level adaptation, existing methods apply unidirec-
tional pixel-level brightening or darkening transformations,
which are not powerful enough to solve our challenging
task. We instead bidirectionally bring the two domains
closer to each other. By enhancing low-light images and
degrading normal light images with added noise and color
casting, we build intermediate states, which serve as step-
ping-stones to cross the wide gap. Moreover, existing low-
light enhancement methods mainly consider human vision
rather than machine vision. In comparison, we design a
low-light enhancement curve family, which is lightweight
but more beneficial to downstream high-level tasks. For
high-level adaptation, we jointly reduce the feature
distance between the states constructed by low-level adap-
tation. We apply multitask self-supervised learning, con-
sisting of inter- and intra-domain, context-based and
contrastive learning. These learning strategies not only
close high-level gaps but also further enhance the represen-
tation. With the proposed HLA scheme, our face detector
achieves superior performance even though we do not use
any annotation of low-light faces. Our contribution is
threefold:

� Aiming at the problem of low-light face detection
without low-light annotation, we propose a joint
low-level and high-level adaptation scheme. Our
model successfully transfers knowledge from nor-
mal light to the dark and surpasses state-of-the-art
face detection and adaptation methods by a large
margin.

� To fill the low-level gap, we propose bidirectional
adaptation. By brightening dark images and degrad-

ing normal-light images, we make the two domains

each take a step toward each other. Moreover, we

design a new illumination adjustment deep curve

targeting downstream high-level tasks.

� To fill the high-level gap, we design cross- and intra-
domain self-supervised learning. We introduce a
multitask scheme based on context-based pretext
tasks and contrastive learning. Our adaptation not
only narrows the gaps among multiple domains but
also further strengthens the visual representation.

This paper is an extension of our earlier publication [13].
Our changes lie in the methodology and experiments. First,
we design a new family of deep curves along with a new
low-light enhancement network in Section 3.2. Our new
low-light enhancement model not only achieves better
detection performance but is also extremely lightweight
and fast. Second, we replace the synthesis-based intermedi-
ate domain generation pipeline with augmentation transfor-
mation on the input images in Section 3.4. This modification
simplifies the original complex training process and sup-
ports end-to-end training. To distinguish our model from
HLA-Face in [13], we refer to our improved version as
HLA-Face v2. With the new techniques, HLA-Face v2 out-
performs HLA-Face by a large margin and narrows the gap
between unsupervised learning and the ideal supervised
learning upper bound to only 0.001 mAP. In addition to
methodology improvement, the experiment has also been
enriched. We provide more comparison results in Sec-
tion 4.2, ablation studies in Section 4.3, and a variety of
applications in Section 4.5.

The remainder of this paper is organized as follows. In
Section 2, we review existing works in relevant areas. Then,
in Section 3, we introduce the motivation and detailed
designs of our method. Next, in Section 4, we demonstrate
the effectiveness of our methods by experiments. Finally, in
Section 5, we summarize the paper and discuss future
directions.

2 RELATED WORKS

Low-Light Enhancement.Insufficient brightness is a common
problem in image capture. Much research has been con-
ducted on illumination enhancement. Early methods manu-
ally model illumination and design adjustment strategies.
Histogram equalization and its variants [14] redistribute the
intensities on the histogram. Regarding low light as dark
haze, dehazing-based methods [15] first invert images and
then apply dehazing techniques. The retinex algorithm
decomposes images into two signals, a reflectance field and
a shading field representing the scene lighting. On this
basis, some methods [9], [16] first decompose reflectance
and lighting and then process the two components sepa-
rately or simultaneously. With the rapid development of
deep learning in recent years, neural networks have been
widely used for low-light enhancement. Some models pro-
cess images in an end-to-end way [17], and some also intro-
duce retinex theory [10], [18], [19]. A series of works further
consider RAW images [20]. A systematic review and bench-
marking can be found in [21].

Although existing low-light enhancement methods can
improve human visual quality, these methods do not fully
consider machine vision and downstream machine learning
tasks. In this paper, we analyze the underlying mechanism
between pixel-level restoration and high-level perception
and propose corresponding solutions.

Fig. 1. Qualitative results and our adaptation paradigm for face detection
in the dark. In comparison to DSFD [4] on original low light and the
LIME [9]-enhanced versions, our model recognizes faces more accu-
rately. Here, the color of the bounding boxes represents the confidence
of recognition, with yellow indicating higher confidence.
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Face Detection. Traditional detectors rely on hand-crafted
mechanisms, while recent models mainly learn features in a
data-driven way. According to the detection framework,
deep-based face detectors can be categorized into two types:
one-stage and two-stage. One-stage models [22] directly
predict the positions and recognition. Two-stage mod-
els [23], [24] instead separate the process of proposal gener-
ation and refinement. Compared with generic object
detection, the challenges of face detection lie in the fact that
the scale is often very diverse and various. To address this
problem, many studies propose multiscale pyramids [25],
[26] and various anchor sampling and matching strate-
gies [27], [28], [29].

Although face detection is a popular high-profile
research topic, existing studies seldom consider the scenario
of insufficient illumination. In this paper, we not only
design an effective dark face detector but also remove the
dependence of low-light annotation.

Dark Object Detection. Despite the rapid development of
normal light object detection, low-light objects have not
received enough attention. For RAWshort-exposure low-light
images, Sasagawa et al. [30] proposed merging pretrained
models in different domains with glue layers and generative
knowledge distillation. Targeting RGB images, Loh et al. con-
structed the dataset ExDark [31], consisting of ten types of
low-light images. Recently, a large-scale dataset DARK
FACE [6] was built, providing an effective platform for the
low-light face detection research field. Thereafter, a series of
detectors came out in the UG2 Prize Challenge.1 However,
these methods highly rely on annotations and therefore are
not robust and flexible enough.

Unsupervised Domain Adaptation. Unsupervised domain
adaptation (UDA) can be a direct solution to remove the
dependency on labels. Typical methods are based on feature
alignment [32], [33], [34], [35], adversarial learning [36], [37],
[38], [39], pixel adaptation [40], [41], [42], and pseudo-label-
ing [43], [44]. For object detection, models usually consider
not only the global domain gap but also the local domain
gap [45], [46]. Although UDA achieves good performance
for many applications, it is less effective in low-light face
detection because of the large low-normal light domain
gap. In this paper, we decompose the complex problem
and design a superior solution.

Bidirectional adaptation is a common design in UDA.
Existing methods [47], [48], [49] mainly introduce a pair of
source-to-target and target-to-source mappings. They

predict fake source and fake target data, which can work as
intermediate domains to bridge the domain gap. Some
methods [50] also use “bidirectional” to express that the
pixel-level translation and the recognition model promote
each other. Our bidirectional low-level adaptation differs
from these methods. Instead of adopting source-to-target
and target-to-source mappings, we decompose the low-light
degradation into three components and introduce two new
mapping directions of illumination restoration and noise &
color distortion.

3 JOINT HIGH-LOW ADAPTATION

This section first presents the motivation of our joint high-
low adaptation and then introduces the detailed design.

3.1 Motivation

We hope to adapt face detection models from the annotated
normal light domain H to the unannotated low-light
domain L. Depending on the transfer route, we roughly cat-
egorize existing methods into three types: image enhance-
ment, image darkening, and feature adaptation, as
illustrated in Fig. 2. Image enhancement-based methods [51]
first brighten the test images and then directly apply the
pretrained normal-light face detector on the brightened
images. Image darkening-based methods [52], [53], [54] first
darken the normal light data and then retrain the face detec-
tor on the darkened images that have human annotation.
Typical feature adaptation methods adopt alignment [35],
adversarial learning [36], or pseudo labeling [42] to adapt
the representation.

The challenge of low-light face detection lies in the com-
plex gaps between H and L. As illustrated in Fig. 3, WIDER
FACE [5] and DARK FACE [6] not only have different illu-
mination and noise levels but also contain different content
and semantic scenes (e.g., daytime scenes versus nighttime
street views). Nevertheless, enhancement and darkening
approaches can only handle pixel/signal-level gaps, while

Fig. 2. Principles of different adaptive low-light detection methods. L: low-light data. H: normal light data. Compared with existing methods (b)–(d),
our method narrows low-level and high-level gaps by comprehensive learning constraints and therefore is more effective and powerful.

Fig. 3. Representative samples from WIDER FACE and DARK FACE.
We enhance DARK FACE for better visibility.1. http://cvpr2020.ug2challenge.org/
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feature adaptation tries to bridge the whole gap in one step,
ignoring the usable distribution correspondence of low-
level vision features.

To address these issues, we propose a two-step route to
bridge the feature-level and pixel-level gaps jointly,
namely, joint high-low adaptation (HLA). Our learning
paradigm is shown in Fig. 2e. We construct low-level inter-
mediate states between L and H and push the high-level
features toward each other by comprehensive learning con-
straints. Specifically, we handle the low-level gap by
enhancing L into EðLÞ and darkening H into DðHÞ. In con-
trast to existing unidirectional translation, our bidirectional
translation not only facilitates low-level adaptation but
also supports high-level adaptation. Then, we bring the
representations of the three domains, H, EðLÞ, and DðHÞ,
closer by comprehensive learning constraints. To further
improve the detection performance, we enhance the feature
by representation learning. Our overall framework is
shown in Fig. 6. In the following, we will introduce each of
the proposed modules.

3.2 Enhancement Curve Family for High-Level
Vision

Most of the popular deep-based low-light enhancement
methods use neural networks to directly generate the pixel
output. However, these approaches usually requires a pow-
erful model with large parameters, leading to the risk of
overfitting. Moreover, deep low-light enhancement models
are often difficult to train. Existing methods either use
paired data [55], adversarial learning [56], or retinex the-
ory [19], which are of limited robustness and may result in
visual artifacts. Recently, Li et al. proposed the curve-based
model Zero-DCE [17], which is lightweight and does not
rely on reference during training. However, it remains
unexplored in [17] to explain the curve’s properties and
decide the optimal curve form. Moreover, not only Zero-
DCE but also almost all existing low-light enhancement
models aim at human vision rather than machine vision.
Many methods keep noisy regions dark, enhance contrast,
or apply local illumination adjustment, which improves
subjective visual quality but might damage the high-level
detection performance. In this paper, we will solve the
abovementioned issues and propose a new enhancement
model especially suitable for machine vision. Next, we will
introduce a new form of curve family and the correspond-
ing training strategy.

Curve Forms. Denote fð�;aÞ as a family of enhancement
functions, where y ¼ fðx;aÞ represents enhancing x 2 ½0; 1�
into y 2 ½0; 1� with a hyperparameter a. We require f to
meet the following constraints:

I. fð0;aÞ ¼ 0; fð1;aÞ ¼ 1; 8a.
II. fð�;aÞ: ½0; 1� ! ½0; 1� is monotonic and differentiable.
III. 8x0 2 ½0; 1�; 8y0 2 ½0; 1�; 9a0 s.t. fðx0;a0Þ ¼ y0.

IV. 8a, @fðx;aÞ
@x

6¼ 0 holds for 8x 2 ð0; 1Þ.
Conditions I and II help improve visibility and maintain

contrast. The first condition limits black and white to remain
the same after enhancement, while the second keeps pixels
in order. Condition III ensures that f can brighten the
image. Intuitively, we want f to cover the entire ½0; 1� � ½0; 1�

space as x and a change so that f can be flexible enough to
handle various inputs. Condition IV prevents f from degen-
erating into a horizontal line; otherwise, the model can be
difficult to train and tune.

Many functions can meet the above requirements. For
simplicity, we only consider elementary functions, which
have simple forms and are naturally differentiable. Consid-
ering Conditions I and II, for some elementary functions,
given 0 ¼ fð0;aÞ, 1 ¼ fð1;aÞ, and the monotonic constraint,
the formula can be directly determined. Take a quadratic
function as an example. Defining y ¼ ax2 þ bxþ c, we have

0 ¼ a � 0þ b � 0þ c;
1 ¼ a � 1þ b � 1þ c;
2axþ b > 0; x 2 ½0; 1�:

8<
: (1)

The solution is as follows:

a 2 ½�1; 1�;
b ¼ a� 1;
c ¼ 0:

8<
: (2)

Therefore, the form of the quadratic enhancement curve is
as follows:

y ¼ xþ axð1� xÞ; a 2 ½�1; 1�: (3)

Note that Eq. (3) is exactly the form of the nonlinear curve
mapping in Zero-DCE, indicating that Zero-DCE is only a
special case of our proposed curve family.

For more complex functions, since the analytical solution
can be hard to obtain, we instead first select a monotonic
interval ½x1; x2� and then move and stretch the function to
pass (0, 0) and (1, 1) by the following affine transformation:

ATðfðxÞ; x1; x2Þ ¼ fððx2 � x1Þxþ x1Þ � fðx1Þ
fðx2Þ � fðx1Þ : (4)

Finally, we obtain a collection of curves. Their formulas are
given in Table 1.

Not all of these curves satisfy Condition III. As shown in
Figs. 4b and 4d, 4e, 4f, 4g, quadratic, cubic, circle, sine, and
arcsine curves cannot cover the entire ½0; 1� � ½0; 1� space.
Accordingly, in Figs. 5c, 5d, 5e, 5f, and 5g, their enhance-
ment results are still dim. Curves satisfying all the require-
ments, reciprocal, exponential, power, and arctangent
functions, instead can substantially enhance the illumina-
tion, as shown in Figs. 5i, 5j, 5k, and 5l. Logarithm only cov-
ers half of the ½0; 1� � ½0; 1� space. Although the logarithmic
curve may not be able to handle overexposure, it works
well for restoring underexposure, as shown in Fig. 5h.

Zero-DCE [17] proposes to solve the limited representa-
tion scope of the quadratic curve by multiple iterations

fnðx;aÞ ¼ fðfn�1ðx;aÞ;aÞ: (5)

As shown in Fig. 4c, with the increase in iteration number n,
the representation range expands. This feature explains
why a larger n produces brighter results in [17]. However,
more iterations lead to increased computation, more param-
eters, and difficulty in training and tuning. In comparison,
the newly proposed logarithmic, reciprocal, exponential,
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power, and arctangent curves can process images without
iteration and thus are lightweight and robust.

Finally, we select the reciprocal function for simplicity.
Logarithmic, exponential, power, and arctangent curves
also have good low-light enhancement performance, which
will be shown and further analyzed in Section 4.3.

Training Strategy. Given the low-light input L, we use a
deep neural network to estimate a and generate the normal
light prediction by EðLÞ ¼ fðL;aÞ. Following [17], the

model is trained based on zero references. In comparison to
common end-to-end or retinex-based low-light enhance-
ment deep models, curved-based zero-reference learning is
more capable of preserving the detailed structure of the
input image, as it only needs to adjust the pixel signals
instead of regenerating them.

Training involves three losses proposed in [17]. First,
an exposure control loss teaches models to adjust the
illumination

TABLE 1
The Forms of Our Low-Light Enhancement Curves

Name Formula Value Ranges Req. 3 Req. 4

Tangent (Cotangent) y ¼ ATð tan ðxÞ; x1; x2Þ �p=2 < x1 < x2 < p=2 ✓
Quadratic y ¼ ax2 þ ð1� aÞx a 2 ½�1; 1� ✓

Cubic y ¼ ATðx3; x1; x2Þ x1 < x2 ✓

Circle y ¼ ATð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; x1; x2Þ x1; x2 2 ½0; 1� ✓

Sine (Cosine) y ¼ ATð sin ðxÞ; x1; x2Þ �p=2 < x1 < x2 < p=2 ✓

Arcsine (Arccosine) y ¼ ATðarcsinðxÞ; x1; x2Þ �1 < x1 < x2 < 1 ✓

Logarithmic y ¼ log ðaxþ 1Þ
log ðaþ 1Þ a > 0 Half ✓

Reciprocal y ¼ ðaþ 1Þx
xþ a

a 2 ð�1;�1Þ [ ð0;þ1Þ ✓ ✓

Exponential y ¼ ax � 1

a� 1
a 2 ½0; 1Þ [ ð1;þ1Þ ✓ ✓

Power y ¼ ATðxa; x1; x2Þ 0 < x1 < x2;a > 0 ✓ ✓

Arctangent (Arccotangent) y ¼ ATðarctanðxÞ; x1; x2Þ x1 < x2 ✓ ✓

Fig. 4. Curves under different parameters. For each function, we use a variety of parameters to show its representation range. Among them, tangent
has the risk of becoming a horizontal line; quadratic, cubic, circle, sine, and arcsine cannot cover the entire ½0; 1� � ½0; 1� space.
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Lexp ¼ jEðLÞ � ej; (6)

where e controls the strength of enhancement. Then, a spa-
tial consistency loss preserves the spatial continuity of
neighboring regions

Lspa ¼
X
j2V

ðjEðLÞ � EðLÞjj � jL� LjjÞ2; (7)

where V denotes four neighboring regions. Finally, a color
constancy loss balances RGB color channels

Lcolor ¼ ðEðLÞR � EðLÞGÞ2 þ ðEðLÞR �EðLÞBÞ2

þ ðEðLÞG �EðLÞBÞ2: (8)

where R, G, and B represent the red, green, and blue color
channels. For example, EðLÞR is the red channel of EðLÞ.
The final training objective is their combination

Lenh ¼ �expLexp þ �spaLspa þ �colorLcolor: (9)

Our Condition IV comes from the fact that exposure con-
trol loss encourages curves to be horizontal. As shown in
Fig. 4a, the tangent curve can be a horizontal line with x1 !
�1=2p and x2 ! 1=2p. Accordingly, during training, it usu-
ally converges into LðxÞ ¼ 1=2, leading to severe distortion,
as shown in Fig. 5b.

Zero-DCE [17] differs from our model by considering
nonuniform illumination and estimating pixelwise a.
Although local illumination adjustment can improve sub-
jective visual quality, it can also cause distortions and
harm semantic information, degrading the performance of
high-level vision models. We instead propose to make a

spatially shared, namely, one a for the whole image. The
benefits are twofold. First, our model can generate fewer
artifacts, preserve more semantic information, and better
benefit high-level tasks. Moreover, since we need to esti-
mate fewer parameters, we can design a more lightweight
model.

Network Architecture. Our model consists of 3 depthwise
32-channel separable convolutional layers. The output of
the first layer is fed into the last layer by skip connection
and fused by elementwise addition. After feature extraction,
we use global average pooling to estimate a. The domain of
a in the reciprocal function is not continuous. For training
convenience, we abandon the negative ð�1;�1Þ part and
add a rectified linear unit (ReLU) to clip a. Since we do not
adjust illumination locally, we can downsample the image
for acceleration. When estimating a, we resize the image to
16� 16, which does not affect the performance. The overall
network architecture is shown in Fig. 6.

Our model is extremely tiny and lightweight. Containing
only 1.95 k trainable parameters, our model is more than
280-fold smaller than RetinexNet [19] (555.2 k). For computa-
tional complexity, our floating-point operations per second

Fig. 5. Enhancement results by different curves. (b) Tangent curve suffers from severe distortion. (c)–(g) Quadratic, cubic, circle, sine, and arcsine
curves fail to lighten the image. (h)–(l) Logarithmic, reciprocal, exponential, power, and arctangent curves successfully brighten the low-light image.

Fig. 6. Our joint high-low adaptation (HLA) for face detection under low-light conditions. We bidirectionally fill the low-level gap by building intermedi-
ate states and fill the high-level gap comprehensively through multitask cross-domain self-supervised learning.
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(FLOPs) are only 0.0005 GMac for 1200� 900� 3 images,
which is 10�6 of RetinexNet (359 GMac).

3.3 Bidirectional Low-Level Adaptation

Combining the proposed low-light enhancement model, in
this section, we explore how to narrow the low-level gap.
The challenge is twofold. First, the coexistence of the seman-
tic gap increases the difficulty of pixel-level transfer. We
show some representative results for translating H into L in
Fig. 7. Since DARK FACE contains many car lights and
streetlamps, CycleGAN [57] generates yellow headlights on
faces, while CUT [58] generates taillight-like artifacts on
human bodies. MUNIT [59] instead fails to adjust the illumi-
nation of the image and generates results visually far from
L. The other challenge lies in the difficulty of image restora-
tion. Low-light brings heavy noise and color bias. Neverthe-
less, existing image restoration methods are not powerful
enough to handle this heavy degradation.

Noting that low-light degradation can be approximated
to be multifactorial and decomposable, we propose a bidi-
rectional adaptation scheme. We roughly decompose the
degradation of underexposure into three aspects: illumina-
tion, color, and noise. Although denoising and color restora-
tion are difficult, reversely applying noise and color bias is
easy. Therefore, we propose to brighten L into EðLÞ and
degrade H with added noise and color bias into DðHÞ, as
shown in Fig. 8. By making the two domains each take a
step toward each other, we fill the pixel-level gap at a lower
cost. Meanwhile, by determining the specific forms of low-
light degradation, the transfer model can be less affected by
the semantics on the nighttime street view. Next, we will in
turn introduce the detailed design of each process.

Brightening. Unlike most low-light enhancement models,
we intend to only brighten the illumination and do not con-
sider color bias and noise. We use the reciprocal curve pro-
posed in Section 3.2, which adjusts illumination globally.
The remaining pixel-level gap related to noise and color is
modeled by the followingH ! DðHÞ process. Our enhance-
ment may not have superior human visual effects but can
better assist high-level tasks.

Noise Synthesis and Color Jittering. We divide the remain-
ing pixel-level gap into color-dependent and color-indepen-
dent. The former is simulated by random color jittering,
while the latter is simulated by Gaussian noise.

In our previous publication [13], we try to exactly simu-
late low-light noise thus using a synthesis-based pipeline.
Although adversarial learning is powerful for learning sig-
nal distribution. It introduces new artifacts and severely dis-
torts small faces as shown in Fig. 9. The key problem is that
Dð�Þ does not need to strictly follow low-light degradations,
it only needs to be the superset of low light. Our new Dð�Þ
not only covers the low-light degradation more comprehen-
sively at a lower cost but is also easier to implement and
supports end-to-end training.

We expect DðHÞ to contain EðLÞ. Based on statistics, we
set the mean and standard of Gaussian noise to m ¼ 0 and
s � U½0; 16�, respectively, and the jittering operation to hue:
(0.8, 1.2), saturation & contrast: (0.6, 1.4), and brightness:
(0.4, 1.2). The pixel value distribution of EðLÞ, H, and DðHÞ
is shown in Fig. 10. Compared with H, our DðHÞ success-
fully covers the distribution of EðLÞ.

3.4 Multitask High-Level Adaptation

Based on the established intermediate domains, we conduct
feature adaptation. Most existing feature adaptations are
not sufficiently robust. Adversarial learning is not stable.
Feature alignment [44], pixel adaptation [60], and pseudo
labeling [42] cannot effectively address complex gaps. We
instead use self-supervised learning, which is more stable
and effective without the introduction of additional human
supervision. By sharing self-supervised learning classifiers
across different domains, the features are pushed into the
same high-dimensional subspace; therefore, the high-level
gap can be filled.

Fig. 7. Results of transferring from WIDER FACE to DARK FACE. The
partial regions are enhanced for better visibility.

Fig. 8. Results of our bidirectionally brightening DARK FACE images and
degrading WIDER FACE images.

Fig. 9. Comparison of different strategies for adding noise. (b) Our previ-
ous publication [13]. (c) Our new strategy.

Fig. 10. The color distribution of different domains. Each spot represents
the average pixel value of an image patch. We use blue to represent
EðLÞ samples, and red to representH andDðHÞ samples.
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Specifically, for EðLÞ, H and DðHÞ, we narrow EðLÞ-H
and H-DðHÞ, respectively. EðLÞ-H is closed by context-
based self-supervised learning, while the gap H-DðHÞ is
filled by contrastive learning, which also improves the effec-
tiveness of features. We also apply contrastive learning on
the single EðLÞ domain to learn more effective features. The
whole adaptation fuses these learning methods in a multi-
tasking way as shown in Fig. 6. Next, we will introduce
each objective.

Filling E(L) and H. Self-supervised learning sets up pre-
text tasks with the labels generated by the images them-
selves. Through pretext tasks, the models can learn about
shapes and semantics. Here, we use the jigsaw puzzles [61].
Rotation [62] or the combination of rotation and jigsaw are
also adopted but are less effective than using jigsaw alone
empirically. The reason may be that some photos in WIDER
FACE are advertisements or paintings in which the faces
have rare angles. Therefore, the rotation pretext task has
ambiguous objectives on WIDER FACE. On the other hand,
jigsaw puzzling can better teach models the concept of posi-
tion, which is beneficial for detection.

Different from [61], we put 3� 3 patches together into a
single image and reduce the permutation number to 30.
According to [63], this approach eases training and is suffi-
cient when jigsaw plays the role of an auxiliary task. Denote
pjig as the ground truth permutation, Lc as cross-entropy
loss, and Fjig as the extracted feature, the training objective
for each domain is

LEðLÞ
jig ¼ LcðFEðLÞ

jig ; p
EðLÞ
jig Þ; (10)

LH
jig ¼ LcðFH

jig; p
H
jigÞ; (11)

and the final training objective is

LEðLÞ$H ¼ LEðLÞ
jig þ LH

jig: (12)

To fill the high-level gaps, we share the permutation classifi-
cation heads between EðLÞ and H so that representations
can be forcefully mapped into a shared space.

Filling H and D(H). The principle of contrastive learning
is to distinguish between “positive” and “negative” sam-
ples. Denote the query as v, its positive pair as vþ and nega-
tives pairs as v� ¼ fv�1 ; v�2 . . . ; v�Ng; the contrastive loss is

Lqðv; vþ; v�Þ ¼ �log
sðv; vþÞPN

n¼1 sðv; v�n Þ þ sðv; vþÞ

" #
: (13)

The similarity sð�; �Þ is often measured by taking the dot
product

sðx; yÞ ¼ expðx � y=tÞ; (14)

where t is the temperature parameter [64]. Intuitively, con-
trastive learning is equivalent to a classification problem in
which each image belongs to its own class. In our imple-
mentation, samples v and vþ are one image under different
views, while v� are other images under some views. Follow-
ing [65], the views are generated by a random data augmen-
tation family. We use a combination of random resizing,
cropping, color jittering, desaturation, Gaussian blur, and
horizontal flip.

Contrastive learning can reduce the distance between
positive samples. Exploiting this capability, we embed the
distortionDð�Þ into contrastive learning

~L cross
H$DðHÞ ¼LqðDðHÞ; Hþ; DðHÞ�Þ

þ LqðH;DðHÞþ; H�Þ; (15)

where Hþ and H� represent the positive and negative pairs
ofH,DðHÞþ andDðHÞ� represent the positive and negative
pairs of DðHÞ. In this way, the features of H and DðHÞ can
be pushed toward each other, and the high-level gap can be
filled. Additionally, compared with traditional feature
alignment strategies, contrastive learning can further
enhance the representation.

We additionally apply single-domain contrastive learn-
ing onH andDðHÞ to learn better representations

~L single
H$DðHÞ ¼ LqðDðHÞ; DðHÞþ; DðHÞ�Þ

þ LqðH;Hþ; H�Þ: (16)

To simplify the training process, we merge the above two
losses by implementing Dð�Þ in augmentation. Use D�ðHÞ to
represent a 50% probability of being H and the other 50%
probability of beingDðHÞ; the final objective is

LH$DðHÞ ¼ LqðD�ðHÞ; D�ðHÞþ; D�ðHÞ�Þ: (17)

Moreover, we apply momentum contrast (MoCo) and fol-
low [66] for other settings.

Improving E(L). To better adapt the face detector, we
apply contrastive learning on the single EðLÞ domain

LEðLÞ" ¼ LqðEðLÞ; EðLÞþ; EðLÞ�Þ: (18)

Final Objective. Finally, all the above learning objectives are
combined in a multitask learning way. Denote Ldet as the
face detection objective on annotated normal light data, and
the final training loss for our joint adaptation is

L ¼ �EðLÞ$HLEðLÞ$H þ �H$DðHÞLH$DðHÞ
þ �EðLÞ"LEðLÞ" þ �detLdet; (19)

where � balances different learning objectives.

4 EXPERIMENTS

In this section, we first describe the details of our implemen-
tation and then provide the experimental results.

4.1 Implementation Details

Network Architecture. Our framework is built based on
DSFD [4]. DSFD adopts an extended VGG16 [67] backbone
and extracts a 6-layer multiscale feature. Our self-supervised
learning headers are placed after all six layers. The headers
share the same architecture of Conv-Conv-FC. Please refer to
the supplementary material for more details, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3152562.

Datasets. Experiments are mainly conducted on the nor-
mal light face detection dataset WIDER FACE [5] and the
low-light face detection dataset DARK FACE [6]. We use
their official splittings.
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Training Settings. First, we individually train the enhance-
ment submodel E on the dataset in [17] and remain fixed
during the remainder of the training.

We pretrain our complete framework on WIDER FACE
using only the detection loss Ldet following [4]. Then, we
fine-tune it on WIDER FACE (images and labels) and
DARK FACE (images only) with all the proposed loss func-
tions. We use a batch size of 8 and an SGD optimizer. Train-
ing lasts for 70 k iterations. The learning rate is set to 1e-4 at
first and then reduced to 1e-5 after 20 k iterations.

Evaluation Settings. For inference, we first enhance the
image by the proposed deep reciprocal curve and then
apply adapted DSFD following its original evaluation
implementation. For performance measurement, we calcu-
late the mean average precision (mAP) as the measure using
the official evaluation tool.2

4.2 Comparison Results

We benchmark 24 state-of-the-art methods. For a comprehen-
sive evaluation, the compared methods cover five categories:
face detection, image enhancement, image darkening, feature
adaptation, and fully supervised learning. The results are
shown in Table 2 and Fig. 11.

Face Detection. We consider eight detection methods: one
is for generic objects, and seven are designed specifically for
faces. Affected by the low-light condition, the performance
of these detectors is unsatisfactory, as shown in Table 2.
Among them, Faster-RCNN3 [68] (retrained on WIDER
FACE) performs the worst. Other face detectors perform
much better, but their mAPs are still lower than 20%. By the
proposed adaptation scheme, our HLA-Face v2 greatly sur-
passes these approaches.

Enhancement. Here, we examine the scheme of first
brightening then detection, i.e., Fig. 2b. As shown in Table 3,
although Small Hard Faces [71] and DSFD [4] are compara-
ble on low-light images, combining illumination enhance-
ment, DSFD generally outperforms small hard faces. This
result indicates that the DSFD has better robustness and
generalization. Therefore, we choose DSFD as the face
detection baseline in the following experiments.

Back to Table 2, we benchmark eight illumination adjust-
ment methods. Although most of them can greatly improve
the detection performance, some methods harm it. This is
because these methods introduce too much visual distor-
tion. As shown in Fig. 12, the result of SICE [18] is still dark.
The results of RetinexNet [9] include a weird green color
bias. KinD [10] instead overdenoises the images, resulting
in dull color and blurry edges. Although the images become
slightly brighter, the gap between the nighttime and

TABLE 2
Low-Light Face Detection Comparison Results

Category Method mAP (%)

Face Detection Faster-RCNN [68] 1.7
SSH [69] 6.9
RetinaFace [3] 8.6
SRN [70] 9.0
SFA [2] 9.3
PyramidBox [1] 14.0
Small Hard Face [71] 16.1
DSFD [4] 16.1

Enhancement (with DSFD) SICE [18] 4.7
RetinexNet [19] 12.0
KinD [10] 15.8
EnlightenGAN y [56] 20.8
EnlightenGAN [56] 31.3
Zero-DCE y [17] 37.3
LIME [9] 40.7
Zero-DCE++ [72] 40.9
Zero-DCE [17] 41.3
MF [16] 41.4

Darkening (with DSFD) MUNIT [59] 29.7
CycleGAN [57] 31.9
CUT [58] 32.7

Unsupervised DA (with DSFD) OSHOT [44] 25.4
Progressive DA [60] 28.5
Bidirectional DA [47] 33.7
Pseudo Labeling [42] 35.1

Fully Supervised Fine-tuned DSFD [4] 46.0

Ours HLA-Face [13] 44.4
HLA-Face v2 45.9

y denotes retraining the deep-based methods with DARK FACE and WIDER
FACE.

Fig. 11. Low-light face detection precision-recall (PR) curves.

TABLE 3
Benchmarking the Combination Performance of Different Face

Detection and Low-Light Enhancement Methods

PyramidBox [1] Small Hard
Face [71]

DSFD
[4]

Average

Original 14.0 16.1 16.1 15.4
KinD [10] 15.6 16.2 15.8 15.9
EnlightenGAN [56] 28.5 29.3 31.3 29.7
LIME [9] 35.7 37.2 40.7 37.9
MF [16] 37.5 38.3 41.4 39.1
Zero-DCE [17] 35.9 37.7 41.3 38.3
Our Eð�Þ 39.4 39.6 44.5 41.2

2. https://github.com/Ir1d/DARKFACE_eval_tools 3. https://github.com/playerkk/face-py-faster-rcnn
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daytime photographs remains large, especially considering
visual distortion. Therefore, these three low-light enhance-
ment methods perform poorly.

LIME [9], EnlightenGAN [56], Zero-DCE [17] and
MF [16] can help DSFD better recognize faces, as shown in
Table 2. They also achieve better subjective visual quality.
As shown in Figs. 12f, 12g, 12h, 12i, 12j, and 12k, faces origi-
nally buried in darkness can be seen more clearly. However,
their performance is still relatively undesirable compared to
our model. This is because when simply combining face
detection with low-light enhancement, the semantic gap
remains unsolved.

For deep-based EnlightenGAN and Zero-DCE, we also
retrain them on the face detection datasets. Specifically,
Zero-DCE is retrained with DARK FACE, while Enlighten-
GAN is retrained with DARK FACE and WIDER FACE.
The training settings are the same as the original implemen-
tation. As shown in Table 2, the performance of face detec-
tion degrades after retraining. This is because compared
with the original training datasets used by EnlightenGAN
and Zero-DCE, DARK FACE suffers from more severe
darkness and distortion, which disturbs the training process
and misleads the enhancement model. We instead train our
enhancement submodel E on clean images [17] and thus are
not affected by noise or distortion.

Darkening. Next, we explore the effects of darkening-
based schemes, i.e., Fig. 2c. We first translate WIDER FACE
to DARK FACE and then use the synthetic dark version
WIDER FACE to retrain the face detection model. Existing
darkening-based adaptation methods [53], [73] mainly use

CycleGAN [57]. We also evaluate more powerful image-to-
image translation methods MUNIT [59] and CUT [58].

As shown in Table 2, all mAP scores of darkening-based
adaptation are lower than 35%. This is because existing
pixel-level translation models cannot fully simulate the
characteristics of low-light, as shown in Fig. 7. The semantic
gap between normal light and low-light cannot be narrowed
by darkening and then retraining. We instead bridge the
high-level and low-level gaps separately, therefore achiev-
ing better adaptation performance

Unsupervised Domain Adaptation. In the following, we eval-
uate UDA methods, i.e., Fig. 2d. To make the comparison
fairly and avoid the impact of weak baseline methods, we
reimplement all Faster-RCNN-based models with DSFD.
OSHOT [44] applies the rotation angle prediction self-super-
vised learning scheme for one-shot domain adaptation. We
extend it into trainingwith thewholeDARKFACE. As shown
in Table 2, OSHOT does not deal well with helping the detec-
tion model transfer the knowledge from the bright condition
to the dark one. The two-step Pseudo Labeling [42] first syn-
thesizes artificial training data by CycleGAN and then fine-
tunes the detector with the pseudo labels. In comparison to
training on CycleGAN-synthetic dark WIDER FACE, the
mAP improves from 31.9% to 35.1%.Nevertheless, the perfor-
mance is still undesirable. Progressive DA [60] proposes joint
adversarial appearance translation and knowledge transfer.
However, the combination of low-level and high-level adver-
sarial learning cannot fully narrow the domain gap. Based on
CycleGAN, Bidirectional DA [47] jointly trains models on
original and darkened normal light as well as original and

Fig. 12. Comparison against enhancement-based methods. (a) Input low-light image and ground truth bounding boxes. (b)-(k) Results of low-light
enhancement methods with DSFD. (l) Our result. y denotes retraining the deep-based enhancement methods. The color of the bounding boxes repre-
sents the confidence of recognition, with yellow indicating higher confidence.
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enhanced low light data. Feature-level adversarial loss and
cross-domain consistency loss further assist the adaptation.
This method is originally designed for dehazing. To imple-
ment it for face detection, we replace the dehazing-related
unsupervised losseswith jigsawpermutation, which has been
proved to be effective for face detection in our paper. The
mAP score of Bidirectional DA is 33.7%, which is better than
training on CycleGAN-synthetic dark WIDER FACE. How-
ever, due to the instability of multi-level adversarial learning
and the complexity of the framework, the training is not stable
and the performance is not satisfactory. In comparison, we
design amore comprehensive and tailored adaptation scheme
for low-light conditions, thus achieving better results.

With Low-Light Annotations. Compared with fine-tuning
DSFD using DARK FACE labels in the training, our model
is only 0.001 mAP lower than the supervised learning
method, demonstrating the effectiveness of our adaptation.

4.3 Ablation Studies

In this section, we validate and discuss each of our technical
designs. The results are summarized in Table 4.

Effectiveness of E(�). Brightening the target image with our
low-light enhancement submodel can improve the perfor-
mance from 15.3% to 41.4% in mAP. As shown in Table 3,
compared with other low-light enhancement methods, our
Eð�Þ best improves the performance of all three face detec-
tors. This demonstrates the robustness and generalization
of our deep reciprocal curve.

Next, we verify the effectiveness of each design in Eð�Þ.
We first benchmark different curve forms without network
simplification and acceleration. Here, we use a standard 7-
layer CNN with symmetrical skip connections and estimate
a without downsampling, which is the same as the back-
bone of Zero-DCE. The results are shown in Table 5.

As analyzed in Section 3.2, Zero-DCE is a special case of
ours. Compared with Zero-DCE, i.e., iterative quadratic
curve (n=8) with elementwise a, our iterative quadratic
curve has better detection performance, which is consistent
with our motivation to use spatially uniform a, i.e., a consis-
tent a for all pixels of an image. The quadratic curve relies
on iterative processing, which introduces more parameters
and increases the risk of overfitting. Accordingly, in Table 5,
its performance is slightly undesirable.

Exponential, power, logarithmic, arctangent, and recip-
rocal curves restore the illumination in one step. Among
these curves, the exponential and power curves perform
slightly worse, possibly because their growth rate is unsta-
ble and unbalanced. As shown in Fig. 13, the exponential
curve tends to generate excessively high y-values for large
x-values. The power curve grows too fast when x is small
and becomes too flat when x is large. Accordingly, in Fig. 5j,
the exponential curve overenhances the contrast, and in
Fig. 5k, the result of the power curve has flat color and dull
contrast. Arctangent and reciprocal forms instead have the
most stable and balanced curve shapes in Fig. 13 and
achieve the best performances in Table 5. The reciprocal
curve slightly outperforms the arctangent curve, possibly
because the reciprocal curve has a simpler form and thus is
easier to train and tune.

The effect of model acceleration and simplification is
shown in Table 6. We report the performance of first
enhancing then detecting with DSFD (mAP), computational
complexity (FLOPs), network parameters, and running time
analysis for images of resolution 1200� 900� 3. The experi-
ment is conducted with an Intel i7-9700 K @3.60 GHz and
GeForce GTX TITAN X. With a performance degradation of
only 0.2%, we decrease the FLOPs to 1e-5 x, the number of
parameters to 1/30 x, and running time to 1/60 x.

A more comprehensive comparison between our light-
weight version curve and other deep enhancement methods
can be found in Table 7. Our submodel not only achieves

TABLE 4
Ablation Study Experimental Results

Eð�Þ EðLÞ $ H H $ DðHÞ EðLÞ " mAP (%)

- - - - 15.3
✓ - - - 41.4
- Rotation - - 22.7
- Jigsaw - - 26.9
- Rot + Jig - - 25.3
- - H only - 18.6
- - ✓ - 19.1
- - - ✓ 20.2
- - ✓ ✓ 20.4
- Jigsaw ✓ ✓ 25.1
✓ Jigsaw - - 42.1
✓ Jigsaw ✓ ✓ 42.6
✓ Jigsaw ✓ ✓ 45.9 y
y denotes building image pyramids for multiscale testing.

TABLE 5
Comparison of Different Curve Forms

Curve Form mAP (%)

Original Zero-DCE [17] 38.3
Exponential 39.1
Power 38.8
Iterative Quadratic (n=8) 40.8
Logarithmic 40.9
Arctangent 41.1
Reciprocal 41.6

For convenience, we do not use the multiscale testing scheme in DSFD.

Fig. 13. Comparison of curve shapes. Given a point, we give possible
solutions of different enhancement curves.

TABLE 6
Comparison of Full and Light Version Enhancement Curves

Method mAP FLOPs Params Time

Full version 41.6% 73 GMac 67.3 k 52 ms
Light version 41.4% 517 k Mac 1.95 k 0.9 ms

For convenience, we do not use the multiscale testing scheme in DSFD.
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better detection performance but is also smaller and runs
faster.

Effectiveness of E(L) $ H. The results of different strate-
gies for closing EðLÞ and H are shown in Table 4. Jigsaw
works better than rotation angle prediction and even their
combination. This may be because the jigsaw pretext task
better helps the detection model recognize positions.

Effectiveness of H$D(H). Contrastive learning on the sin-
gle H domain (H only) can improve the mAP from 15.3% to
18.6%. By introducing DðHÞ, the performance further
improves by 0.5%, demonstrating the effectiveness of the
proposed cross-domain contrastive learning scheme.

Effectiveness of E(L) " . Improving the feature on EðLÞ
increases the mAP score by 4.9%, showing that learning a

good visual representation is vital for adaptive detection.

The combination of H $ DðHÞ and EðLÞ " can increase the

performance to 20.4% in mAP. Further introducing EðLÞ $
H improves the mAP score to 25.1%. However, this score is

slightly lower than using EðLÞ $ H only. It may be that

three learning tasks are too complicated for a single net-

work. In contrast, with low-light enhancement Eð�Þ, intro-
ducing H $ DðHÞ and EðLÞ " to EðLÞ $ H increases the

mAP score from 42.1% to 42.6%. By narrowing the illumina-

tion gap between the source and target domains, our low

light enhancement can assist different learning tasks to

cooperate with each other.
Combination Effect. With all proposed modules, finally,

the full version achieves the best result. DSFD applies a pyr-
amid multiscale testing scheme, which leads to better detec-
tion results but also extensively increases the inference time
from 1.25 hours to 10 hours on the DARK FACE test set.
Even without multiscale testing, our HLA-Face v2 (42.6% in
mAP) can still surpass all the compared methods in Table 2.

Failure Cases. Although our model greatly surpasses
existing methods, it still has several limitations. As shown

in Fig. 14, when people are facing away from the camera,

our model may predict false positive faces on the back of

their heads. These wrong faces may be deduced from

human body contours. Our model may also recognize other

bright circular objects as faces, such as car wheels. In addi-

tion, our model is not robust to window reflection and

extremely small faces (less than 5�5 pixel), which is due

to the limitation of the detection backbone. Another

interesting failure case is shown in the last column of

Fig. 14. Our model recognizes a face logo. However, this

prediction is wrong because DARK FACE does not con-

sider fake faces.

4.4 Comparison Against the Earlier Publication

Compared with our earlier publication HLA-Face [13], our
HLA-Face v2 further improves the unsupervised detection
performance from 44.4% to 45.9%. As shown in Fig. 15,
HLA-Face overbrightens the images and brings severe
noise. HLA-Face v2 is less affected by illumination and
noise and therefore has more accurate face prediction.

Moreover, our newly proposed reciprocal curve is more
powerful and lightweight than the enhancement submodel
in HLA-Face. With our new designs, the performance of
first brightening and then detection improves from 39.1% to
41.4% without a pyramid multiscale testing scheme in
DSFD. For model size and computational complexity, the
enhancement submodel in [13] has 214.13k parameters, and
the FLOPs for 1200� 900� 3 images are 231.67 GMac. In

TABLE 7
Comparison of Deep-Based Enhancement Methods on Detec-
tion Performance (mAP), Computational Complexity (FLOPs),

Network Parameters, and Running Time Analysis

Method mAP FLOPs Params Time

RetinexNet [19] 12.0% 359 GMac 555.2 k 248 ms
EnlightenGAN [56] 31.3% 275 GMac 8.64 M 120 ms
Zero-DCE++ [72] 40.9% 0.08 GMac 10.56 k 6.3 ms
Zero-DCE [17] 41.3% 86 GMac 79.42 k 61 ms
Our submodel E 44.5% 517 k Mac 1.95 k 0.9 ms

Fig. 14. Failure cases of false positive prediction, window reflection,
extremely small faces, and fake faces. The color of the bounding boxes
represents the confidence of recognition, with yellow indicating higher
confidence.

Fig. 15. Comparison against our earlier publication [13]. The color of the
bounding boxes represents the confidence of recognition, with yellow
indicating higher confidence.

TABLE 8
Normal Light Face Detection Comparison Results

on WIDER FACE

Easy Medium Hard

DSFD [4] 94.6% 93.7% 88.0%
HLA-Face [13] 95.0% 93.9% 88.3%
HLA-Face v2 95.2% 94.1% 88.8%
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comparison, the newly proposed reciprocal curve only has
1.95 k parameters and 517 k Mac FLOPs.

4.5 Applications

In this section, we show our generalization by four applica-
tions: detecting normal light images, handling real-world
cases, improving supervised learning, and adapting generic
object detection models.

Performance on WIDER FACE. Our model can detect nor-
mal light faces as well. To avoid overexposure, we skip Eð�Þ
when the average pixel value of the image is higher than 45,
which does not affect our original detection on DARK

FACE. As shown in Table 8, compared with DSFD [4],
HLA-Face v2 performs better on WIDER FACE for easy,
medium, and hard faces, indicating that our joint high-low

adaptation can improve the robustness and generalization

of the model. Our model also outperforms HLA-Face [13],

verifying the effectiveness of our newly proposed low-level

enhancement model and high-level adaptation schemes.
Real World Cases. The results on in-the-wild images are

shown in Fig. 16. The original DSFD [4] can be easily
affected by illumination and incorrectly recognizes shoes,
arms, car lights, and signboards as faces. Our HLA-Face v2
detects faces more accurately.

Fig. 16. Comparison on real-world cases. First row: input images and DSFD detection results. Second row: our enhancement and detection results.
The color of the bounding boxes represents the confidence of recognition, with yellow indicating higher confidence.

TABLE 9
Comparison on Generic Object Detection, Classification, and Semantic Segmentation

Eð�Þ EðLÞ $ H H $ DðHÞ EðLÞ " ExDark CODaN Dark Zurich

AP AP50 AP75 Top-1 Acc. mIoU

- - - - 29.3% 59.8% 24.5% 46.9% 17.1%
✓ - - - 29.7% 59.5% 24.9% 56.2% 20.6%
- ✓ - - 29.8% 60.7% 25.6% 55.6% 19.0%
- - ✓ - 29.4% 59.5% 25.2% 52.3% 20.5%
- - - ✓ 29.5% 59.3% 25.7% 54.7% 19.7%
✓ ✓ ✓ ✓ 30.4% 61.1% 26.2% 60.7% 23.1%

We adapt Faster-RCNN from COCO to ExDark, ResNet from daytime to nighttime on CODaN, and RefineNet from Cityscapes to Dark Zurich.

Fig. 17. Comparison results of assisting generic object detection on low-light images without low-light annotation. Images are from the testing set of
the ExDark dataset. Our adaptation can improve the detection accuracy and sometimes even find objects missed in the ground truth.

1262 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023

Authorized licensed use limited to: Peking University. Downloaded on December 24,2022 at 10:31:31 UTC from IEEE Xplore.  Restrictions apply. 



Improving Supervised Learning. Our unsupervised adaptation
scheme can also help with supervised learning. For fine-tun-
ing DSFD with labels, combining our adaptation schemes,
the mAP is improved from 46.0% to 48.1%.

Generic Object Detection. The proposed joint high-low
adaptation can also be extended to other tasks. For example,
the AP of COCO-pretrained [74] Faster-RCNN [68] on
ExDark [31] is 29.3%, as shown in Table 9. With our adapta-
tion designs introduced, the performance improves, and the
final full version achieves the highest AP of 30.4%, demon-
strating the generalization of our method.

Moreover, with our adaptation, Faster-RCNN can detect
objects missed in the ground truth, such as the umbrella
in the first row and the cars and trucks in the third row
in Fig. 17. This capability demonstrates that our adapta-
tion can help reduce the burden of creating low-light
annotations.

Classification. In the above experiments, we explore various
detection tasks. Now we further extend our framework to
more vision tasks. First, we analyze how our framework per-
forms for day-to-night classification adaptation based on a
newdataset CODaN [75]. As shown in Table 9, the top-1 accu-
racy of daytime-pretrainedResNet-18 [76] is only 46.9%,which
can be increased to 60.7% with our adaptation. Ablation
study demonstrates the effectiveness of each of our technical
designs.

As shown in Fig. 19, our adaptation can greatly improve
visibility, correct misclassified results, and increase the con-
fidence of correct results.

Semantic Segmentation. Nighttime street scene segmenta-
tion is a vital technique for autonomous driving. Our frame-
work can also adapt RefineNet [77] from normal light
Cityscapes [11] to low-light Dark Zurich [78]. As shown in
Table 9, the mean intersection over union (mIoU) score is
improved from 17.1% to 23.1%. More subjective results are
shown in Fig. 18.

One interesting result is that, for object detection and
image classification, the jigsaw permutation task is often
more powerful than cross-domain and single-domain con-
trastive learning. However, for semantic segmentation, con-
trastive learning works better in day-to-night adaptation. It
may be that segmentation is a pixel-level classification task,
and contrastive learning can better guide the model to
extract finegrained features.

5 CONCLUSION AND FUTURE WORK

To fully exploit normal light annotation and reduce the bur-
den of obtaining extra low-light annotation, we design a
joint high-low adaptation (HLA) framework. Specifically, we
introduce reciprocal-curve-based illumination adjustment,
bidirectional pixel-level translation, and representation adap-
tation based on multitask self-supervised learning. Qualita-
tive and quantitative experiments support our designs, show
the superiority of our model, and demonstrate the potential
of joint high- and low-level adaptation. Our work can inspire
related new research on low-light enhancement, high-
level vision under low-level visual quality, and feature
adaptation.

Although we remove the dependency on low-light anno-
tations, the proposed HLA still requires many low-light
images. However, in real applications, it is sometimes even
quite difficult to collect many images. There are 100 degra-
dation types for 100 images on the internet. A suitable and

Fig. 18. Adapting street scene semantic segmentation to nighttime without low-light annotation. With our adaptation, the pixels are better categorized
and the predicted contours are clearer.

Fig. 19. Results of unsupervised low-light image adaptive classification.
Below each image, we show the predicted category and its confidence.
Our model can correct wrong predictions and increase the confidence of
correct predictions.

Fig. 20. Result of adapting HLA-Face v2 to the given test image by one-
shot fine-tuning.

WANG ETAL.: UNSUPERVISED FACE DETECTION IN THE DARK 1263

Authorized licensed use limited to: Peking University. Downloaded on December 24,2022 at 10:31:31 UTC from IEEE Xplore.  Restrictions apply. 



large dataset with thousands of images cannot be collected
for each degradation. A naive solution would be one-shot
fine-tuning. In Fig. 20, we show a case in which DSFD [4]
and our HLA-Face v2 mistakenly recognize the rightmost
man’s hands or clothes as faces. By mixing the given test
image into the L domain and fine-tuning for 100 iterations,
our one-shot HLA-Face v2 produces more accurate results.
In the future, we will explore faster and more reliable adap-
tation strategies.

Another direction for future work is extending HLA
to other high-level tasks. We have demonstrated our
generalization on generic object detection in Section 4.5.
In the future, we will explore more tasks, such as low-
light action recognition [79] and nighttime surveillance
analytics [80].
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